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Abstract : A simple theoretical model was developed to investigate behavior of equatorial planetary waves (EPW)

in the Earth’s atmosphere. Based on linearized equations of EPW in equatorial β-plane, EPW by mode n=0 has

greatest meridional wind amplitude at the equator and decays exponentially when away from the equator (Gaussian

decay). EPW by mode n=1 has greatest amplitude of meridional wind perturbation (v′) at latitude y= ± 1 (nondim)

and EPW by mode n=2 has v′ equal to zero at latitude y = 1/2
√
2 (nondim), the peak of amplitude is just outside

the equator. Simulation of Yanai wave results that both zonal wind and geopotential field have greatest perturbation

amplitude at latitude y= ± 1(u′ = 0 in Equator) while perturbation of zonal wind (u′) and geopotential field (Φ′) will

be in geostrophic balance at latitude −1 < y < 1 (nondim) or -(β−1√gH)1/2 > y > (β−1√gH)1/2 (length dimension).

Simulation of Kelvin wave results that either zonal wind or geopotential field has symmetric amplitude and symmetric

perturbation relative to Earth’s latitude. For special treatments, by mode n=1, 2, and 3 there are two classes of EPW,

namely high frequency Poincaré modes waves and the low frequency Rossby modes waves. These waves have special

behaviors as functions of n. This paper presents a linear model of EPW and mathematically goes step-by-step to derive

and explain their character on an equatorial beta-plane.
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1 INTRODUCTION

Theory of atmospheric waves along the equatorial
band is unique, and considered to be one of the
driving atmospheric physical phenomena in the
tropics. Various studies have been conducted to
identify and analyze the behavior of equatorial
planetary waves (EPW) which are observed from
troposphere to lower stratosphere, such as Kelvin
waves, Rossby waves, Yanai waves and Poincaré
waves as well [3, 6, 8, 9, 11, 12, 15, 17]. Equatorial
waves are generated by diabatic heating due to
organized tropical large-scale convective heating in
the equatorial belt [6, 9]. Although they do not
contain as much energy as other typical tropospheric
weather disturbances, EPW causes predominant
disturbances in the equatorial atmosphere such as
inducing mean-meridional circulation which plays an
important role in the heat balance of the equatorial
belt, relating to the coldness process of the equatorial

tropopause and also affecting the patterns of low level
moisture convergence that control the distribution
of convective heating and convective storms in large
longitudinal distances [1, 6, 9, 10]. Regarding the
above information, study of these waves is substan-
tially important to be developed. One of the ways
is to simulate these waves within the linear shallow
water model on an equatorial β-plane.

Simulation of EPW helps us to explain how
these waves can be observed through relation of
atmospheric perturbation elements. Matsuno [17]
developed a model of quasi-geostrophic motions in
the equatorial area by applying a single layer of
homogeneous incompressible fluid with free surface
and assuming that Coriolis parameter to be pro-
portional to the latitude. His work concerned only
with the mathematical analyses of the simplified
hydrodynamical equations, but it is most interesting
to develop in the EPW simulations. Lindzen [14]
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used the β-planes approximation and Laplace’s
Tidal Equation to describe planetary waves in the
equator and mid-latitudes. Both of these models are
interesting to be discussed and simulated, but we
must be careful before applying these results in the
actual atmospheric disturbances.

The aim of this paper is to provide clear overview and
analysis of EPW characters by examining horizontal
velocity and geopotential perturbations. In this paper
analytically wave solutions referencing to Matsuno
equations will be found. The mathematical solutions
of EPW will be simulated on an equatorial β-plane.
Because a complete development of EPW would be
rather complicated, at this time we only simulate the
EPW in the free waves form and concentrate on the
horizontal structure. The last section of this paper
will be closed by a conclusion.

2 GOVERNING EQUATIONS

Equatorial waves are trapped near the equator,
and they propagate in zonal and vertical directions.
Mathematical interpretation of EPW’s horizontal
structure can be simulated by linearised shallow water
equations for perturbations on a motionless basic
state of mean depth H in β-plane. The advantage of
the β-plane approximation is that it does not con-
tribute nonlinear terms to the dynamical equations.
This equatorial beta-plane approximation is only
valid for scales L≪R, where R is the planetary radius.

Briefly, the β-plane approximation is a method
to linearize Coriolis force (f) which can be approx-
imated by expanding the latitudinal dependence of
′f ′ in a Taylor series about reference latitude ϕo, as
follows:

f(ϕ+ ∂ϕo) = f(∂ϕo) +

(
df

dϕ

)
ϕ=ϕo

∂ϕ

+

(
df2

dϕ

)
ϕ=ϕo

∂ϕ2 + ..... (1)

For the smallest value of ∂ϕ, ∂ϕ = y/R and retain-
ing only the first two terms (neglect the higher order
terms) to yield:

f = f + βy (2)

Equation (2) is called the mid-latitude β-plane
approximation, β is a Rossby parameter (β = 2Ωcos
R−1) which can be also derived from ∂f/∂y. For
our model, initial Coriolis force (fo) can be neglected
at the equator, so f = βy is the EPW’s β-plane
approximation.

As mentioned before, to interpret horizontal structure
of EPW, we should derive shallow water equations
for perturbations on a motionless basic state of mean
depth H. Randall [5] explained that the shallow water
equations are the simplest form of the equations of
motion that can be used to describe the horizontal
structure of an atmosphere. Shallow water equations
can be derived from 3D momentum equations by
ignoring the effects of friction:

Du⃗

Dt
+ f k̂ × v⃗ = −1

ρ
∇⃗ p − gk̂ (3)

ρ

[
Du⃗

Dt
+ f k̂ × v⃗

]
= −∇⃗ p − ρgk̂ (4)

Here, ρ is the density of the air, f is Coriolis force,
g is gravity force, u⃗ is the three-dimensional velocity
vector, p is air pressure, and D is total derivative op-
erator. By applying the perturbation method and as-
suming that fluid is incompressible and no fluid crosses
the mean depth (H) or no share, we can now write the
horizontal momentum equation as:

ρ

[
Dv⃗h
Dt

+ f k̂ × v⃗

]
= −ρg∇⃗ h (5)[

Dv⃗h
Dt

+ f k̂ × v⃗

]
= −g∇⃗ h (6)

v⃗h is the two-dimensional velocity vector (xi+vj). For
EPW case, wave movement is in hydrostatic balance.
The speed component on the horizontal plane does not
depend on the altitude, thus the continuity equation
can be vertically integrated from surface hs = 0 and
free surface altitude hf to yield:

∂

∂t
(hf − hs) + ∇⃗. [v⃗h (hf − hs)] = 0 (7)

∂hf

∂t
+ ∇⃗. [v⃗hh] = 0 (8)

Substitute the β-plane approximation into the equa-
tions 6 and 8, then we will find the non-linear shallow
water equation in β-plane approximation:

Du

Dt
− βyv + g

∂h

∂x
= 0 (9)

Dv

Dt
+ βyu+ g

∂h

∂y
= 0 (10)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (11)

u and v are zonal wind velocity. In order to isolate
some simple wave forms we need to linearize the equa-
tion 9-11. First we consider small perturbations on an
initially motionless atmosphere, i.e. basic state winds
(uo, vo, wo) = 0. Then by applying the perturbation
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method in to equations 9, 10 and 11, we finally get the
linear shallow water equations in equatorial β-plane:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− βvy + g

∂h

∂x
= 0

⇔ ∂

∂t
(ū+ u′) + (ū+ u′)

∂

∂x
(ū+ u′)

+v′
∂

∂y
(ū+ u′)− βyv′ + g

∂

∂x
(H + h′) = 0

⇔ ∂u′

∂t
+ ū

∂u′

∂x
− βyv′ + g

∂h′

∂x
= 0

⇔ ∂u′

∂t
− βyv′ +

∂Φ′

∂x
= 0 (12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ βuy + g

∂h

∂y
= 0

⇔ ∂v′

∂t
+ (ū+ u′)

∂v′

∂x
+ v′

∂v′

∂y

+βy (ū+ u′) + g
∂

∂y
(H + h′) = 0

⇔ ∂v′

∂t
+ ū

∂v′

∂x
+ βyū+ βyu′ + g

∂h′

∂y
= 0

⇔ ∂v′

∂t
+ βyu′ +

∂Φ′

∂y
= 0 (13)

∂

∂t
(H + h′) +

∂

∂x
[(ū+ u′) (H + h′)]

+
∂

∂y
[v′ (H + h′)] = 0

⇔ ∂h′

∂t
+ ū

∂h′

∂x
+H

∂u′

∂x
+H

∂v′

∂y
= 0

⇔ ∂Φ′

∂t
+ gH

[
∂u′

∂x
+

∂v′

∂y

]
= 0 (14)

Here, u′, v′, and h′ are perturbation of mean zonal
flow, meridional flow, and geopotential height respec-
tively. So, linearised shallow water equations in β-
plane approximation from equations 12, 13, and 14
may be briefly written as follows:

∂u′

∂t
− βyv′ +

∂Φ′

∂x
= 0 (15)

∂v′

∂t
+ βyu′ +

∂Φ′

∂y
= 0 (16)

∂Φ′

∂t
+ gH

[
∂u′

∂x
+

∂v′

∂y

]
= 0 (17)

The above equations are useful to determine the ma-
thematical structure of EPW.

2.1 Mathematical Solution of EPW in the
Horizontal Structure

To simplify the determination of the EPW solution,
the equation in part 15-17 must be transformed into
a nondim unit form [16, 17]. This transformation is
done by defining the characteristic of length unit [L],
and time unit [T] in the dimensionless variables:

x∗ =
x

[L]
, y∗ =

y

[L]
, u∗ =

u√
gH

, v∗ =
v√
gH

t∗ =
t

[T ]
,Φ∗ =

Φ

gH
, [L] = [V ] [T ] = [T ]

√
gH

Here, x*, y*, u*, and v* are nondim units of longi-
tude, latitude, zonal wind and meridional wind, re-
spectively. Substituting the above nondim units into
equation 12:

∂
(
u∗√gH

)
∂ (t∗ [T ])

− βy ∗ [L] v∗
√
gH +

∂ (Φ∗gH)

∂ (x∗ [L])
= 0

∂u∗

∂t∗
− β

[L]
2

√
gH

y∗v∗ +
∂Φ

∂x∗ = 0

where,

β
[L]

2

√
gH

= 1

Then, by using the above information, non-
dimensional forms of u, v, t, and Φ can be written
as:

[T ] =

(
1

β
√
gH

)1/2

=

(
1

βc

)1/2

[L] =

(√
gH

β

)1/2

=

(
c

β

)1/2

u∗ =
u′

√
gH

, v∗ =
v′√
gH

t∗ = t (cβ)
1/2

,Φ∗ =
Φ′

gH

Here c =
√
gH is the velocity of pure gravity waves.

By taking these units, the equations (l5-17) are trans-
formed into non-dimensional β-plane forms:

m (cβ)
1/2 ∂ (u∗c)

∂t∗
− βy∗

(
c

β

)1/2

v∗c

+

(
β

c

)1/2 ∂
(
Φ∗c2

)
∂x∗ = 0

⇔ β1/2c3/2
∂u∗

∂t∗
− β1/2c3/2y∗v∗

+β1/2c3/2
∂Φ∗

∂x∗ = 0

⇔ ∂u∗

∂t∗
− y∗v∗ +

∂Φ∗

∂x∗ = 0 (18)
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m (cβ)
1/2 ∂ (v∗c)

∂t∗
+ βy∗

(
c

β

)1/2

u∗c

+

(
β

c

)1/2 ∂
(
Φ∗c2

)
∂y∗

= 0

⇔ β1/2c3/2
∂v∗

∂t∗
+ β1/2c3/2y∗u∗

+β1/2c3/2
∂Φ∗

∂y∗
= 0

⇔ ∂v∗

∂t∗
+ y∗u∗ +

∂Φ∗

∂y∗
= 0 (19)

m (cβ)
1/2 ∂

(
Φ∗c2

)
∂t∗

+c2

[(
β

c

)1/2
∂ (u∗c)

∂x∗ +

(
β

c

)1/2
∂ (v∗c)

∂y∗

]
= 0

⇔ β1/2c5/2
∂Φ∗

∂t∗
+ β1/2c5/2

[
∂u∗

∂x∗ +
∂v∗

∂y∗

]
= 0

⇔ ∂Φ∗

∂t∗
+

∂u∗

∂x∗ +
∂v∗

∂y∗
= 0 (20)

or in general, the non-dimensional linearised shallow
water equations in equatorial β-plane forms may be
written as follows:

∂u

∂t
− yv +

∂Φ

∂x
= 0 (21)

∂v

∂t
+ yu+

∂Φ

∂y
= 0 (22)

∂Φ

∂t
+

∂u

∂x
+

∂v

∂y
= 0 (23)

The EPW mathematical solution can be represented
in the form of decaying waves in the meridional di-
rection. Assuming waves act in the y-direction for the
perturbations and propagate in the east-west direction
[4, 9]:

 u′

v′

Φ′

 =

 û (y)
v̂ (y)

Φ̂ (y)

 exp [i (kx− ωt)] (24)

Here, k is zonal wavenumber and ω is frequency. The
above equation comes from the Fourier component as-
suming that wave has a regularity in space and time
so it is possible to be represented in the sinusoidal
Fourier forms. If we substitute the equation (24) into
equation (21-23), we will find the first-order ordinary
differential equations in the y direction for meridional
structure of amplitude perturbations û, v̂ and, Φ̂ as
follows:

−iωû− yv̂ + ikΦ̂ = 0 (25)

−iωv̂ + yû+
dΦ̂

dy
= 0 (26)

−iωΦ̂ + ikû+
dv̂

dy
= 0 (27)

Find the solutions for û, v̂ and, Φ̂ by applying some
elimination techniques:

−iωû− yv̂ + ikΦ̂ = 0

−iωkΦ̂ + ik2û+ k
dv̂

dy
= 0

û =
1

i (k2 − ω2)

[
ωyv̂ − k

dv̂

dy

]
(28)

and,

−iωkû− kŷv + ik2Φ̂ = 0

−iω2Φ̂ + iωkû+ ω
dv̂

dy
= 0

Φ̂ =
1

i (k2 − ω2)

[
kyv̂ − ω

dv̂

dy

]
(29)

Substitute the equation (28) and (29) into equation
(22) so we will find second-order ordinary differential
equation for v̂(y):

d2v̂

dy2
+

(
ω2 − k2 − k

ω
− y2

)
v̂ = 0 (30)

or in dimensional form, equation 30 can be written as:

d2v̂

dy2
+

[(
ω2

gH
− k2 − βk

ω

)
β2y2

gH

]
v̂ = 0 (31)

The above equations can be simplified into first-order
differential equations in order to solve depending so-
lution of v̂ to y:

d2v̂

dy2
− y2v̂ = −Cv̂ (32)

Because the equatorial β-plane approximation is not
valid beyond ±30o away from the equator we have to
confine the solutions close to the equator if they are
to be good approximations of the exact solutions, thus
the boundary condition for this equation is:

v̂ → 0, if y → ± ∝

C is (ω2 − k2 − k
ω ), also known as dispersion relation-

ship of EPW, thus we can modify the equation 32 in
order to find the recursive relationship:

(D − y) (D + y) v̂C = − (C − 1) v̂C (33)

(D + y) (D − y) v̂C = − (C + 1) v̂C (34)
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D is a differential operator (d/dy), then multiply equa-
tion 33 by (D + y) and equation 34 by (D − y):

(D + y) (D − y) [(D + y) v̂C ]

= − (C − 1) [(D + y) v̂C ] (35)

(D − y) (D + y) [(D − y) v̂C ]

= − (C + 1) [(D − y) v̂C ] (36)

If equation 36 is compared to equation 33 we will find
a conclusion that both of these equations will have
the same form if index of C in equation 33 replaced
by C + 2.

(D − y) (D + y) v̂C+2 = − (C + 1) v̂C+2 (37)

And finally the recursive relationship is:

v̂C+2 = − (D − y) v̂C (38)

Use this recursive equation in equation 34:

(D + y) v̂C+2 = − (C + 1) v̂C (39)

Equation 39 shows that the solution of v̂ is depending
on C index. For C = −1, the solution of v̂ is:(

d

dy
+ y

)
v̂1 = 0

v̂1 = e−
1
2y

2

(40)

Then we should try to determine the other values of
v̂ by using the recursive relation and equation 40:

v̂2 =
(

d
dy − y

)
v̂0,

v̂4 =
(

d
dy − y

)2

v̂0,

v̂6 =
(

d
dy − y

)3

v̂0,

v̂8 =
(

d
dy − y

)4

v̂0,



v̂3 =
(

d
dy − y

)
v̂1

v̂5 =
(

d
dy − y

)2

v̂1

v̂7 =
(

d
dy − y

)3

v̂1

v̂9 =
(

d
dy − y

)4

v̂1


from these solutions, mathematically v̂ has the value
only for odd’s index or (2n + 1), or briefly can be
written as follows:

v̂2n+1 =

(
d

dy
− y

)n

e−
1
2y

2

(41)

Remember that C from equation 41 is 2n + 1, where
n = 0, 1, 2, 3.., thus the equation 32 can be written in
a new form:

d2v̂

dy2
− y2v̂ = − (2n+ 1) v̂ (42)

which means that the differential form in equation 42
has a solution if:

ω2 − k2 − k

ω
= 2n+ 1 (43)

or in the dimensional form:[(
ω2

gH
− k2 − βk

ω

) √
gH

β

]
= 2n+ 1 (44)

where n= -1,0,1,2,3.., depending solution of v̂ to y in
equation 41 can be simplified as follows:(

d

dy
− y

)
v̂1 = e

1
2y

2 d

dy

(
e−

1
2y

2

v̂1

)
= f1 (y) (45)(

d

dy
− y

)2

v̂1 = e
1
2y

2 d2

dy2

(
e−

1
2y

2

v̂1

)
= f2 (y) (46)(

d

dy
− y

)3

v̂1 = e
1
2y

2 d3

dy3

(
e−

1
2y

2

v̂1

)
= f3 (y) (47)(

d

dy
− y

)4

v̂1 = e
1
2y

2 d4

dy4

(
e−

1
2y

2

v̂1

)
= f4 (y) (48)(

d

dy
− y

)5

v̂1 = e
1
2y

2 d5

dy5

(
e−

1
2y

2

v̂1

)
= f5 (y) (49)

∗
∗(

d

dy
− y

)n

v̂1 = e
1
2y

2 dn

dyn

(
e−

1
2y

2

v̂1

)
(50)

by using the equation 40, the equation 41 can be re-
duced to:

v̂n = e
1
2y

2 dn

dyn

(
e−y2

)
(51)

2n + 1’s index on v̂ can be replaced by n (n =
0, 1, 2, 3..) to have a uniform notation as a differen-
tial order. The amplitude of the wave is a positive
number and then the equation (51) can be written:

v̂n = (−1)
n
e

1
2y

2 dn

dyn

(
e−y2

)
(52)

The above equation (52) can be modified as follows:

(−1)
n
e

1
2y

2

v̂n = (−1)
n
ey

2 dn

dyn

(
e−y2

)
(53)

The right side of last equation is the Hermite Polyno-
mial functions of order n, which satisfy:

Hn (y) = (−1)
n
ey

2 dn

dyn

(
e−y2

)
(54)
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Figure 1: Hermite polynomial (Hn) of order n.

If it’s evaluated for each n from equation (54), few of
these polynomials have the values as follows:

Hn (y) ⇔

H0 (y) = 1
H1 (y) = 2y

H2 (y) = 4y2 − 2
H3 (y) = 8y3 − 12y

H4 (y) = 16y4 − 48y2 + 12
H5 (y) = 32y5 − 160y3 −+120y

By using Hermite notation (54), then our equation
set becomes:

v̂n = e−
1
2y

2

Hn (y) (55)

Hn (y) strongly determines the distribution of the
meridional component of horizontal wind and geopo-
tential field perturbation in the EPW problems.
According to Setiawan [16], order-n in EPW is
independent (orthogonal) to the other n orders,
it’s because the Hermite polynomials functions are
orthogonal with respect to e−y2

:

for n ̸= m :∫ +∞

−∞
e−y2

Hn (y)Hm (y) dy = 0 (56)

for n=m :∫ +∞

−∞
e−y2

Hn (y)Hm (y) dy = 2n.n!
√
π (57)

or, ∫ +∞

−∞
e−y2

Hn (y)Hm (y) dy = 2n.n!
√
π.δmn

(58)

because Hn = (−1)
n
e

1
2y

2

v̂n, so :∫ +∞

−∞
v̂n (y) v̂m (y) dy = 2n.n!

√
π.δmn (59)

n and m are index of Hermite polynomials let say first
and second index, δmn is Kronecker delta for positive
integers m and n (δmn = 0 if m ̸= n, and δmn = 1 if
m = n ). Order-n shows how the wave moving sys-
tem works in a medium, thus n corresponds to the
number of nodes in the meridional velocity profile in
the domain |y| < ∞ or it’s also called the mode of
EPW. Next is determining the set of solutions for the
horizontal structure of EPW (non-dimensional). Dif-
ferentiated Hn (y) in equation (54) to y and using
Leibniz notation rules in simplifying the equation:

d

dy
Hn (y) = (−1)

n
2yey

2 dn

dyn

(
e−y2

)
− (−1)

n
2yey

2

ye−y2 dn

dyn
e−y2

− (−1)
n
2ey

2

n
dn−1

dyn−1
e−y2

(60)

We will find some solutions of Hermite’s differential
which can be used to solve horizontal structure equa-
tions of EPW:

d

dy
Hn (y) = 2n (−1)

n−1
ey

2 dn−1

dyn−1
e−y2

d

dy
Hn (y) = 2nHn−1 (y) (61)

d2

dy2
Hn (y) = 4n (n− 1)Hn−2 (y) (62)

Using equation (61) into the equation (28) and (29),
we will find other solution forms of EPW’s amplitude
in the zonal and geopotential component :

ûn =
1

i (k2 − ω2)

(
ωyv̂n − k

dv̂n
dy

)
=

1

i (k2 − ω2)

[
ωye−

1
2y

2

Hn − k
d

dy

(
e−

1
2y

2

Hn

)]
=

1

i (k2 − ω2)
[(ω + k) yHn − 2nkHn−1] e

− 1
2y

2

(63)

Φ̂n =
1

i (k2 − ω2)

(
kyv̂n − ω

dv̂n
dy

)
=

1

i (k2 − ω2)

[
kye−

1
2y

2

Hn − ω
d

dy

(
e−

1
2y

2

Hn

)]
=

1

i (k2 − ω2)
[(ω + k) yHn − 2nωHn−1] e

− 1
2y

2

(64)
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with n= 0, 1, 2, 3,..., and ω ̸= ±k. By inserting
the value of each amplitude (û, v̂, and Φ̂) into the
equation (24) and taking the real part, we finally find
the general equations of EPW in horizontal structure
(nondim) as follows:

un (x, y, t) =
1

(k2 − ω2)
[(ω + k) yHn − 2nkHn−1]

× e−
1
2y

2

sin (kx− ωt) (65)

vn (x, y, t) = e−
1
2y

2

Hn cos (kx− ωt) (66)

Φn (x, y, t) =
1

(k2 − ω2)
[(ω + k) yHn − 2nωHn−1]

× e−
1
2y

2

sin (kx− ωt) (67)

with n= 0, 1, 2, 3,..., and ω ̸= ±k.Thus, solutions of
EPW are propagations of the system formed by the
components u, v, and Φ.

2.2 Frequency Boundary of EPW

Taking the relation dispersion in equation 43 as a
quadratic equation in k:

k2 +
k

ω
+
[
2n+ 1− ω2

]
= 0 (68)

The above equation has various real roots of k, which
means that the discriminant of equation 68 must be
positive:

4ω4 + 4 (2n+ 1)ω2 + 1 > 0 (69)

Thus, the solutions of frequency boundary in non-
dimensional forms are:

| ω |>
√

1

2
(2n+ 1) +

1

2

√
(2n+ 1)

2 − 1 (70)

or,

| ω |<
√

1

2
(2n+ 1)− 1

2

√
(2n+ 1)

2 − 1 (71)

and in dimensional forms can be written as:

| ω |>

√(
1

2
(2n+ 1) +

1

2

√
(2n+ 1)

2 − 1

)
β
√
gH (72)

or,

| ω |<

√(
1

2
(2n+ 1)− 1

2

√
(2n+ 1)

2 − 1

)
β
√
gH (73)

These solutions provide a frequency boundary for the
existence of EPW.

2.3 Yanai Wave

The case n = 0 is a special case corresponding to the
mixed Rossby-gravity or Yanai waves. For mode case
n = 0 the general equations for horizontal structure
of Yanai wave (nondim) can be produced by using
equation 65-67 as follows:

u′
n (x, y, t) =

y

k − ω
e−

1
2y

2

sin (kx− ωt) (74)

Φ′
n (x, y, t) =

y

k − ω
e−

1
2y

2

sin (kx− ωt) (75)

v′n (x, y, t) = e−
1
2y

2

cos (kx− ωt) (76)

If n=0, the dispersion relationship of EPW becomes:(
ω2 − k2 − k

ω

)
= 2n+ 1(

ω2 − k2 − k

ω

)
= 1 (77)

then, this dispersion relationship (77) can be factored:

(ω + k)
(
ω2 − kω − 1

)
= 0 (78)

Equation 78 is a cubic equation in ω, so we will have
three roots for ω when n and k are specified, namely:

ω1 = −k (79)

ω2 =
k

2
+

√
k2

4
+ 1 , k > 0 (80)

ω3 =
k

2
−
√

k2

4
+ 1 , k > 0 and k ± 1

2

√
2 (81)

Equation 80 is corresponding to eastward moving
Poincaré wave and equation 81 can be separated into
dimensional form as follows:

ω3 =
k

2

√
gH − k

2

√
gH

(
1 +

4β

k2
√
gH

) 1
2

(82)

ω3 =

{
−β

k if large k;

−
(
β
√
gH

) 1
2 if k → 0.

(83)

From the equation 83 we can conclude that westward
moving of EPW by mode n = 0 has mixed character.
When k is large, they behave like westward Poincaré
waves and when k is small or k → 0, they behave
like westward Rossby waves. Thus these waves are
called as mixed Rossby-gravity waves or commonly
known as Yanai waves. The phase speed of this wave
in dimensional form can be written as:

c3 =
ω3

k
= − β

k2

[
1

2
+

1

2

(
1 +

4β

k2
√
gH

) 1
2

]−1

(84)

Yanai waves are westward propagating (ω/k < 0) rela-
tive to the mean zonal flow and dispersive (from figure
2).
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Figure 2: Dispersion curve of westward moving Yanai
waves.

2.4 Kelvin Wave

Kelvin waves are a special case when the meridional
velocity vanishes everywhere identically (v = 0) and
equations 25-27 reduce to:

−iωû+ ikΦ̂ = 0 (85)

yû+
dΦ̂

dy
= 0 (86)

−iωΦ̂ + ikû = 0 (87)

Eliminating the geopotential component by substitut-
ing the equation 85 into equation 87, we find:

ω = ±k (88)

or in dimensional form:

ω = ±k
√

gH (89)

It’s known as the dispersion relation for frequency ω
and wavenumber k. If equation 85 is combined to
equation 86 we will find a first-order ordinary differ-
ential equation for the meridional amplitude structure
of û:

dû

dy
± yû = 0 (90)

The solution of this equation is:

û (y) = e∓
1
2y

2

(91)

The valid solution of 89 and 90 decays for a large y
only when the negative sign in the exponential func-
tion is chosen (our boundary conditions are that the
solution must decay as y → ∞). It is called the so-
lution of Kelvin waves and can then be written in

dimensional forms as follows:

û (y) = ûo exp

(
−βy2k

ω

)
(92)

Φ̂ (y) =
√
gH ûo exp

(
−βy2k

ω

)
(93)

Then phase speed can be written in dimensional form
as:

c =
√
gH (94)

The second solution of 89 and 90, the one that prop-
agates westward, would grow exponentially for large
y and as such is disregarded. The solution of zonal
wind and geopotential field perturbations associated
with Kelvin waves in nondim forms are:

u′
n (x, y, t) = e−

1
2y

2

cos (kx− ωt) (95)

Φ′
n (x, y, t) =

ω

k
e−

1
2y

2

cos (kx− ωt) (96)

Thus, Kelvin waves are eastward propagating (ω/k >
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Figure 3: Dispersion curve of eastward moving Kelvin
wave.

0) relative to the mean zonal flow and non-dispersive
(figure 3). They are a form of gravity waves (94).

2.5 Equatorial Rossby and Poincaré Waves

The solutions of (30) that decay far away from the
equator exist only when an important constraint con-
necting its coefficients is satisfied:

ω2 − k2 − k

ω
= 2n+ 1, n = 1, 2, 3, ... (97)

The above coefficients are a dispersion relationship in
ω cubic equation where the solutions associate with
eastward and westward propagating waves.
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For high frequencies we can neglect k/ω in 97
to obtain:

ω2 − k2 − k

ω
≈ ω2 − k2 = 2n+ 1, n = 1, 2, 3, ... (98)

and the solutions are:

ω1,2 = ±
√

k2 + 2n+ 1 (99)

This is a dispersion relation for equatorially trapped
Poincaré waves. They propagate in either the east-
ward (+) or westward (-) direction. The phase speed
of Poincaré waves in dimensional form is:

c1,2 = ±c

√
1 +

β

k2
√
gH

(2n+ 1) (100)

Where c is pure gravity velocity and remember
that meridional mode number for Poincaré waves is
n = 1, 2, 3... and the frequency boundary should be
valid in range equation 70 or 71. These wave groups
are similar to gravity-inertial waves in mid-latitudes
[2].

For low frequencies we can neglect ω2 in (97) to
obtain:

ω2 − k2 − k

ω
≈ −k2 − k

ω
= 2n+ 1, n = 1, 2, 3... (101)

and its solution is:

ω3 = − k

k2 + 2n+ 1
(102)

This is a dispersion relation for equatorially trapped
Rossby waves. They propagate only in the westward
(ω/k < 0) direction. The phase speed of Rossby waves
in dimensional form is:

c3 = − β

k2

(
1 +

β

k2
√
gH

(2n+ 1)

)−1

(103)

The phase speed is inversely proportional to the
square of the horizontal wavenumber. Meridional
mode number for Rossby waves is n = 1, 2, 3... and
the frequency boundary should be valid in range
equation 70 or 71. These waves are similar to their
counterparts in the mid-latitudes and critically
depend on the β-effect. Eastward propagation occurs
when they have a high wave number [2]. Thus, both
Poincaré and Rossby waves are dispersive waves. The
perturbation solutions for Poincaré and Rossby waves
are depending on mode-n and their frequency. In gen-
eral eigenfunctions for EPW by mode n = 1, 2, 3... are:
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Figure 4: The dispersion relation for free equatorial pla-
netary waves (EPW) in nondimensionalized wavenumber
and frequency (Kelvin waves, Yanai waves, Rossby waves,
East Poincaré waves (EGW) and West Poincaré waves
(WGW).

for mode-n=1,

u′
n (x, y, t) =

1

(k2 − ω2)

[
2y2 (ω + k)− 2k

]
× e−

1
2y

2

sin (kx− ωt) (104)

Φ′
n (x, y, t) =

1

(k2 − ω2)

[
2y2 (ω + k)− 2ω

]
× e−

1
2y

2

sin (kx− ωt) (105)

v′n (x, y, t) = 2ye−
1
2y

2

cos (kx− ωt) (106)

for mode-n=2,

u′
n (x, y, t) =

1

(k2 − ω2)

[(
4y3 − 2y

)
(ω + k)− 8yk

]
× e−

1
2y

2

sin (kx− ωt) (107)

Φ′
n (x, y, t) =

1

(k2 − ω2)

[(
4y3 − 2y

)
(ω + k)− 8yω

]
× e−

1
2y

2

sin (kx− ωt) (108)

v′n (x, y, t) =
(
4y2 − 2

)
e−

1
2y

2

cos (kx− ωt) (109)

and for mode-n=3,

u′
n (x, y, t) =

1

(k2 − ω2)

×
[(
8y4 − 12y2

)
(ω + k)−

(
24y2 − 12

)
k
]

× e−
1
2y

2

sin (kx− ωt) (110)

Φ′
n (x, y, t) =

1

(k2 − ω2)

×
[(
8y4 − 12y2

)
(ω + k)−

(
24y2 − 12

)
ω
]

× e−
1
2y

2

sin (kx− ωt) (111)

v′n (x, y, t) =
(
8y3 − 12y

)
e−

1
2y

2

cos (kx− ωt) (112)
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3 THEORETICAL SIMULATIONS

As we mentioned above that the theoretical si-
mulations of equatorial planetary waves will be
designed based on shallow water equations on a mo-
tionless basic state of mean depth H in β-plane. The
simulations are developed in a barotropic model. The
simplest condition of barotropy is given by assuming
that we have a homogeneous model atmosphere. A
single layer of homogeneous, incompressible fluid
with a free surface has been applied and it is assumed
that Coriolis parameter is proportional to the latitude.

Based on meridional amplitude simulations, in
general for EPW n = 0 perturbation of meridional
wind associated with existence of EPW has the great-
est meridional wind amplitude at the equator and
Gaussian decays when away from the equator. EPW
by mode n=1 has greatest amplitude of meridional
wind perturbation (v′) at latitude y = ±1 (nondim)
and v′ equal to zero at the equator while EPW by
mode n = 2, amplitude of v′ equal to zero at latitude
y = ±1/2

√
2 (nondim) and greatest amplitudes

outside the tropics. The distributions are graphically
shown in the figure 5. The waves are trapped in

Figure 5: Experiment of meridional wind amplitude as-
sociated with EPW in the north-south direction for mode
n = 0, 1 and 2.

meridional direction (figure 5). This trapping occurs
symmetrically north and south of the equator, so
that the equatorial region becomes a waveguide. The
further simulations of EPW will be discussed below in
the special modes of free waves such as Yanai waves,
Kelvin waves, Poincaré waves and even Rossby waves.

3.1 Yanai and Kelvin Waves Simulations

The peak of meridional wind perturbations of Yanai
waves will occur at the equator (Gaussian distribution

centered at the equator) and decays moving away
from the equator, while zonal wind perturbations
have their greatest amplitude at latitude y = ±1
(nondim) and zero around the equatorial latitude
belt, as well as to geopotential fields (figure 6a).
Yanai waves’ amplitude for zonal wind, meridional
wind, and geopotential field component are identically
symmetric with different forms. For this case ampli-
tude of the meridional wind is Gaussian symmetry
and amplitude of zonal wind and geopotential field
are symmetric with two peaks at latitude y = ±1
(nondim).

Figure 6: Experiment of zonal wind amplitude (red) and
meridional wind amplitude (yellow) associated with Yanai
waves in the north-south direction for Yanai waves mode
n = 0 (a). Zonal wind amplitude (blue) associated with
Kelvin waves (b) with k = 0.5 dan ω = -0.65326.

For Kelvin waves’ case, the waves are only cor-
responding to symmetry zonal wind and geopotential
height while perturbation of meridional wind
(southerly velocity component) is identically zero at
about the equator (figure 6b). The peak amplitude of
zonal wind perturbation is at the equator and decays
in a Gaussian form when away from the equator. The
shape of zonal wind and geopotential field amplitude
are symmetrical Gaussian. The character of zonal

10
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Figure 7: Simulation of geopotential field and horizontal
wind perturbations corresponding to Yanai waves mode
n= 0 with zonal wavenumber (k)=0.5,=1.0, and 1.5, re-
spectively.

wind perturbation in Kelvin waves is similar to
meridional wind perturbation of Yanai waves.

The perturbations of three components (u′, v′

and Φ′) associated with Yanai and Kelvin waves are
simulated in figure 7. From the results of simulation,
in general it is clear that the characters of Yanai or
Rossby-Gravity waves have a maximum oscillation
of the meridional wind perturbation at the equator
and exponentially decays (Gaussian) when away from
the equator. The decaying is characterized by a
weakening of the meridional wind perturbations (look
at the arrows shape), while the zonal wind is zero at
the equator. In the higher latitudes y > 1 and y < −1
perturbation of zonal wind (u′) and geopotential field
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Figure 8: Simulation of geopotential field and horizontal
wind perturbations corresponding to Kelvin waves mode
n= -1 with zonal wavenumber (k)=0.5,=1.0, and 1.5, re-
spectively.

(Φ′) will be approximately in geostrophic balance
while near the equator ageostrophic wind components
predominate. The value of y domain can be written
in dimensional form as follows:(

1

β

√
gH

) 1
2

< y < −
(
1

β

√
gH

) 1
2

Figure 7 is Yanai waves simulation with t = 0, waves
with larger k values will produce more pressure cells
where high pressure and low pressure formed are
not symmetric to the equator (regularly changes
to the longitude). The oscillations of zonal wind
and geopotential height are antisymmetric but the
oscillations of meridional wind are symmetric. In
addition, the number of cells that formed showed that
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a higher k value (zonal wavenumber) will produce
more antisymmetric zonal waves (s), but when k
increases, the wavelength (λ) will decrease. If k = 0.5
there are only a pair of high-pressure cell and a
pair of low pressure cells (s = 1) that spread in a
circumference of the earth’s atmosphere while if k = 1
and k = 1.5 they increase to two (s = 2) and three
times (s = 3) of k = 0.5. These waves move toward
the west and do not have a constant form when they
propagate (dispersive).

In the case of free Kelvin waves, Figure 8d-f
describe some simulations of the horizontal pertur-
bations of geopotential and horizontal wind velocity
for Kelvin wave n = −1 with k = 0.5, 1.0, and
1.5. These provide information that the existence
of Kelvin waves are characterized by disturbances of
zonal winds which are stronger in the equator and
decay when away from the equator, and there is no
oscillation of meridional wind component. A higher
k value (zonal wave number) will produce more sym-
metric zonal wave numbers (s) but the wavelength
(λ) is small. These waves move toward the east and
have a constant form when they propagate. The
phase speed of these waves is easterly relative to the
mean zonal flow. Typical values of the Kelvin wave
speed are in range c ≈ 10 - 50 m/s in troposphere
(corresponding to H = 10 - 250 m) with higher values
in middle atmosphere. The existence of Kelvin waves
in the atmosphere will change the average of zonal
wind profile in latitude (figure 9).

Figure 9: Experiment of mean zonal wind profile due to
Kelvin wavedriving (nondim).

3.2 Equatorial Rosbby Waves and Poincaré
Waves Simulations

Rossby waves propagate only to the west, whereas
their energy (group velocity) may propagate to the

east or west (dispersive). Further, they are described
in figure 10. Rossby waves with eigensolution for
mode n = 1 are characterized by the geostrophic
relationship between pressure (geopotential fields)
and velocity winds. The strong zonal velocity is
found along the equator. Rossby waves will be in
geostrophic balance between the pressure gradient
and wind at domain y > 0.5 and y < −0.5 (nondim).
Meridional wind perturbations vanish along the
equator. Zonal wind (u′) and geopotential field
(Φ′) perturbations are symmetric relative to the
latitude but the meridional wind perturbation (v′) is
antisymmetric. For Rossby waves with eigensolution
for mode n = 2 are characterized by the geostrophic
relationship between pressure (surface elevation)
and velocity fields at domain domain y > 0.5 and
y < −0.5 (nondim). The differences from n=1 are
these waves do not have wind field perturbation
along the equator, the maximum peak for zonal
wind perturbation is approximately at y = ±1, v′ is
symmetric, and both of u′ and Φ′ are antisymmetric
relative to latitude. Rossby waves by mode n = 3 are
similar to eigensolution of n = 1, but for this case
the peak of u′ are approximately in 3 regions namely
y=-1, 0, and 1. In general, we can conclude that
Rossby waves are quasi geotrosphic motions, and if
we assume for a small k, the Rossby waves will be
non-dispersive waves. Consequently, the phase speed
of Rossby waves of different modes is c/3, c/5, c/7.
(eq.102) or phase speed for n = 1 > n = 2 > n = 3.
In other words, the higher-order Rossby modes are
much slower and phase speed of Rossby waves <
Kelvin waves.

Eastward Poincaré or east propagating Inertio-
gravity waves have phase and group velocities toward
the east. From our simulations (figure 11), Poincaré
waves by mode n = 1 are characterized by symmetric
geopotential height and zonal wind perturbations.
Meridional wind perturbations vanish along the
equator and appear at domain about y± 0 (anti-
symmetry). These waves are also characterized by
relationships between Pressure and velocity fields.
For case mode n=2, Poincaré waves have symmetric
meridional wind perturbations about the equator and
no evidence of zonal wind perturbations. For case
n = 3, is similar to n = 1, but number of the pressure
cells increase to be 5 cells relative to Earth’s latitude.
The higher-order East propagating Poincaré modes
are much faster and phase speed of these waves are
more than Kelvin waves or in other words phase
speed of eastward Poincaré waves > Kelvin waves >
Rossby waves.
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Figure 10: Simulation of horizontal wind and geopotential field perturbations corresponding to equatorial Rossby waves
mode n= 1, 2, and 3.
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Figure 11: Simulation of horizontal wind and geopotential field perturbations corresponding to equatorial Eastward
Poincaré waves mode n= 1, 2, and 3.
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Figure 12: Simulation of horizontal wind and geopotential field perturbations corresponding to equatorial Westward
Poincaré waves mode n= 1, 2, and 3.
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Figure 13: Simulation of surface elevation corresponding to Kelvin waves, Yanai waves, Rossby waves, eastward Poincaré
waves and westward Poincaré waves, respectively.
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Westward Poincaré waves have phase velocity toward
the west and group velocity also toward the west
except for very low zonal wavenumbers. Further, they
are described in figure 12. West propagating Poincaré
waves with eigensolution for mode n=1 are character-
ized by strong zonally symmetric component, as well
as the meridional wind perturbation vanishes along
the equator. Both zonal wind and geopotential field
perturbations are symmetric but meridional wind
perturbations are antisymmetric when away from the
equator. Simulations of westward Poincaré waves
with eigensolution mode n = 2 and 3 are similar
to eastward Poincaré waves. The differences are in
distribution of horizontal wind directions and forms
of geopotential fields relative to latitude. Strong
horizontal wind perturbations are near the domain
1 < y < 3 and −3 < y < −1 (nondim). Simulation
of surface elevation corresponding to Kelvin waves,
Yanai waves, Rossby waves, eastward Poincaré waves
and westward Poincaré waves are described in figure
13.

4 CONCLUSIONS

From these simulations we can conclude that k and
ω are parameters which control the type of wave pat-
terns. Eigenfunction gradually changes if there is a
differences between k and ω. Further, the general so-
lutions of EPW are formed by functions-n, so if n is
an odd number then v′ is an odd function and u′ and
Φ′ are even functions with respect to y. Consequently
these waves have symmetric components of u′ and zero
or antisymmetric components of v′ relative to latitude,
for example Rossby n = 1, 3, Kelvin n = −1, east-
ward Poincaré waves n = 1, 3, and westward Poincaré
waves n = 1, 3. If n is even number, each compo-
nents are reversed, for example Yanai n = 0, Rossby
n = 2, eastward Poincaré waves n = 2 and westward
Poincaré waves n = 2.
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